CFAES Give Today
Entomology

Department of Entomology

CFAES

Faculty Research Areas

Carol Anelli

In my undergraduate courses, many designed for honors students and non-majors, I target information and scientific literacy, critical thinking, teamwork, communication, and quantitative reasoning.  These skills are broadly applicable across professional careers and vital for navigating life in the modern world. I have developed a number of pedagogies and activities, some of which are published with former graduate students.  My graduate courses have focused on Darwin and evolutionary thought, professional preparedness, and insect physiology (my former area of research).


Luis Canas

The long term goals of my lab are to understand the ecology of major insect pest groups of ornamentals and vegetables produced in controlled environments and to develop ecologically based management practices that will reduce our dependence on pesticides and have less adverse effects on the environment. With this in mind, the core objectives of my research program will be (1) to advance our understanding of ecological principles and how they are driving the population trends observed for major insect pest groups of ornamentals and vegetables produced in controlled environments and their natural enemies, (2) apply these ecological principles to develop management practices for insect pests, and (3) develop IPM solutions for ornamental and vegetables that can be applied not only in controlled environments but elsewhere. Current projects examine the effects of physical and cultural controls on life history traits of selected pests of plants grown in controlled environments. In addition, I am exploring the effect of the level of initial insect infestation on overall distribution as well as the relationship between soil health, plant defenses and insect biodemography.


Mary Gardiner

The Gardiner Lab studies the ecology of urban greenspaces. Much of our work focuses on the ecological and conservation value of vacant land. This work takes place in Cleveland, Ohio – a city managing more than 27,000 vacant lots created as a result of protracted economic decline, home foreclosure, and population loss. Researchers in the lab examine how the landscape composition and legacy as  well as local plant community and management of vacant lots influences their conservation value for arthropods, studies focused from the tree canopy to soil communities.

Insect pollinators are vital for the production of many fruits, nuts and vegetables, including apples, blueberries, almonds, tomatoes and pumpkins.   These crops are also vulnerable to pests and diseases, which are often controlled through the use of pesticides.  However, pesticides may be toxic to insect pollinators, setting up a conflict between the need for pollination and the need for pest and disease control. In our lab we are seeking to understand how to protect pollinators from the pesticides and other toxins they encounter.  The managed European honey bee, Apis mellifera, serves as a model pollinator for toxicological testing.  While the honey bee is the most economically important pollinator in the U.S. and serves as an excellent model species, we are also interested in understanding pesticide toxicity in other pollinating insects as well. The Bee Lab


I’m an applied entomologist specializing in the development of Specialty Crop System IPM. I am broadly interested in optimizing agricultural production systems, including understanding the biology and ecology of these systems and the tactics that can improve their efficiency. (In short, I help kill the bugs that kill your food.) I am always looking for new collaborations in agricultural research and extension. 


Megan Meuti

Many of us intuitively recognize that our mosquito problems are seasonal; there are times of the year when mosquitoes are abundant and we cannot go outside without getting bitten (e.g., late spring and summer), while there are other times when we enjoy a reprieve from mosquito bites (e.g., late fall and winter). I am interested in how mosquitoes tell what time of year it is and appropriately respond to their environment. Members of my lab group study how circadian clock genes allow mosquitoes to measure day length to determine the time of year; how male mosquitoes change their accessory gland proteins to influence female behavior and physiology; and whether mosquitoes in urban environments are active for longer periods during the year and/or bite humans more frequently. We use a variety of molecular, genetic and physiological techniques to investigate these questions. Our ultimate goal is to uncover specific ways to manipulate seasonal responses in insects so that we can control them more effectively. The Meuti Lab


Andrew Michel

My overall goal is to understand how insect pests adapt to rapidly changing selection pressures in agroecosystems such as host-shifting to important crops or resistance to management tactics. A lack of understanding of how insect pests adapt limits the effectiveness and sustainability of insect management, and threatens agricultural production. Specifically, my research focuses on characterizing the genetic basis for insect pest adaptation and how these adaptive traits spread across the landscape. Our research methods range across scales, from molecular to ecosystems, and include genome sequencing, gene expression, molecular marker analysis, and migration and gene flow estimation across a species distribution. Understanding and demonstrating how insects adapt, as well as communicating research-based insect management recommendations, delays the evolution of resistance or emergence of pests and ensures safer and more productive food supply. The Michel Lab


Kayla Perry

The Perry Lab investigates how disturbances influence the structure and function of insect communities in natural and urban forests. Natural disturbances such as native insects and windstorms are essential components of forest ecosystems, but human-induced disturbances such as exotic species, habitat degradation, and climate change impact forest health and management. To assess the impacts of disturbance, we use insects and their biodiversity as an indicator of forest health. Ongoing research projects in Ohio, Michigan, and Pennsylvania investigate the responses of forest insect communities to disturbance caused by emerald ash borer (Agrilus planipennis), windstorms, salvage logging, and urbanization. Although we study a variety of insect groups, my taxonomic expertise includes ground- and soil-dwelling arthropod communities, particularly ground beetles (Coleoptera: Carabidae). 

 


Larry Phelan

Our research program encompass both basic and applied aspects of areas: 1) the role of soil communities in plant health and susceptibility to herbivory, disease, and plant competition in biological farming systems, and 2) identification and behavioral characterization of plant secondary compounds and arthropod semiochemicals that mediate host finding and other behaviors.


Peter Piermarini

My laboratory investigates the molecular physiology of mosquito vectors with an emphasis on ion transport mechanisms involved with salt and water homeostasis. We also conduct applied research on mosquitoes with an emphasis on the discovery and development of insecticides and/or repellents from natural sources (e.g., plants). 

Keywords:  physiology, toxicology, biochemistry, molecular biology, mosquito


Sarah Short

The Short Lab is broadly interested in understanding the factors that influence variation in susceptibilty to pathogen infection and transmission of infectious disease. We study how insects interact with harmful and helpful microbes and the ecological and evolutionary forces shaping insect immune defense.  As vector biologists, we are also interested in finding ways to use this information to improve our ability to prevent the spread of vector-borne diseases. We primarly study Aedes aegypti, the mosquito vector of dengue and Zika virus. We are currently focusing on two major research areas:

1. The factors determining the formation and maintenance of the mosquito microbiome. The mosquito midgut microbiome is an important determinant of vector borne disease transmission, but it varies between species, location, and even between individuals in the same population. It also varies across developmental stages and as a result of changes in diet. We are interested in better understanding the environmental, physiological, and genetic factors that shape bacterial populations in the mosquito gut. We are currently studying the impact of larval nutrition on adult microbiome formation. Our approach is multifacetd, combining high throughput methods (e.g. bacterial 16S high-throughput sequencing, transcriptomics)  and targeted molecular techniques (e.g. RNAi and qPCR) to quantitatively assess organism and population-level phenotypes.

2. The impact of the microbiome on mosquito capacity to transmit pathogens. The bacteria associated with mosquitoes can have important implications for their susceptibility to infection by pathogens like dengue virus. We are interested in taking this further, and investigating how the microbiome impacts life history traits critical for disease transmission. We study this at the level of individual organisms as well as populations, asking how the microbiome impacts the life history of a single mosquito and the extent to which the microbiome could influence variation in pathogen transmission.


Jamie Strange

Dr. Jamie Strange has studied bee health and genetics for over 20 years.  The research focus of The Strange Bumble Bee Health and Genetics Lab is to understand how pests, parasites, and pathogens impact bee populations and how population genetic tools can be applied to study changes to bee populations. Current projects include understanding the effects of landscape on bumble bee pathogen and parasite community, the impacts of urbanization on population diversity, and conservation of the Rusty-Patched Bumble Bee, a federally protected species.


Kelley Tilmon

The Tilmon Agronomic Crop Insect Pest Lab performs research and extension on the ecology and management of insects in agronomic crops including corn and soybean.  Projects span the discplines of ecology, evolution, and behavior.


Sam Ward 

Sam’s research group (Landscaped Ecosystem and Forest Entomology Lab; LEAFE Lab) studies the ecology and management of insects that feed on trees. They work on a variety of topics across multiple spatial and temporal scales, ranging from biological control of ornamental pests to macroscale ecology of invading forest insects. Most projects are aimed at understanding drivers of the arrival, establishment, and spread of non-native insects (invading species and imported biological control agents), with a particular emphasis on mitigating ecological and economic impacts of invaders. Other themes in the lab include the spatial ecology of arthropods, tree and insect responses to climate change, and ecoinformatics.


Shaohui Wu 

My research interest is focused on integrated management of arthropod pests and diseases in turfgrass. Research areas in my lab include but are not limited to chemical control, biological control, microbial control (with entomopathogenic nematodes, fungi, bacteria, or viruses), and pesticide resistance diagnosis and management.  Also, I am interested in exploring for novel and eco-friendly tactics for managing turf pests and diseases. The goal of research is to reduce the reliance on chemical pesticides and side effects from chemical applications (e.g. pesticide resistance, non-target effects, water / soil pollution), thus promoting biodiversity and environmental sustainability.